Search results

Search for "hybrid materials" in Full Text gives 98 result(s) in Beilstein Journal of Nanotechnology.

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • ]. NIR light irradiation for 10 min can yield temperatures up to 61 °C in mesoporous PDA with a photoconversion efficiency of 26.7%. Despite the advantages, many of the polymer nanoparticles show strong photoluminescence and do not withstand long-term light irradiation. To overcome this challenge, hybrid
  • materials with other functional materials have been found to be useful. Covalent organic frameworks (COFs) are a new class of organic polymers containing B, C, Si, N, and O in their backbones. Conjugation of COFs with Fe3O4 nanoparticles will yield a two to three times higher PCE than that of bare Fe3O4
PDF
Album
Review
Published 04 Oct 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
PDF
Album
Review
Published 01 Jun 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • , indicating that the conductivity loss through the carbon shell plays a dominant role in the EM dissipation. Based on the above analysis, it is considered that multiple loss mechanisms may contribute to the improvement of EM absorption for the as-prepared SiC@C-ZnO hybrids (Figure 7). First, the hybrid
  • materials possess a large number of three-dimensional gaps, which are generated by the stacked one-dimensional SiC nanowires and the ZnO particles. These gaps can lead to reflection or scattering losses when the microwaves enter (Figure 7a). Second, conductivity losses can occur in the carbon shell on the
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • various issues regarding the replacement of toxic precursor components and by-products by non-toxic substances in order to improve viability and/or growth of the entrapped cells. In fact, new organic, inorganic, and hybrid materials for cell entrapment need to be optimised regarding characteristics such
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • hydrophilic/hydrophobic properties. Furthermore, conjugated hybrid materials exhibit excellent performance because of the synergistic effects of different components of the hybrid materials. The overall structural design concept of the absorbers was also described. The Janus structure reduces the heat loss to
PDF
Album
Review
Published 04 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • electrode can also be improved by choosing a conductive and/or high surface area substrate, such as porous nickel foam [22][23]. In the literature, some research has been performed to evaluate the OER electrocatalytic performance of hybrid materials of Ni-, Fe- and/or Co-based oxides/(oxy)hydroxides and Gr
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • organic backbones, e.g., aromatic rings, have been used, the field tends to use the term “metalcone” as a general description for these hybrid materials. One of the most extensively researched metalcones are titanicones. Titanicones are deposited by coupling a titanium inorganic precursor, such as
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • research due to its intrinsic antimicrobial properties. Xie et al. (2019) developed AgNPs composites containing polydopamine–hydroxyapatite–chitosan by adding AgNPs to hybrid materials, which significantly reduced microbial infection in the implanted place [109]. Polydopamine and chitosan play an important
PDF
Review
Published 29 Sep 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • discuss the properties of the coordination polymer single crystals as well as their performance in energy, environmental, and biomedical applications. Keywords: applications; assembly; coordination polymer; metal-organic frameworks; nanoarchitectonics; Introduction Coordination polymers are hybrid
  • materials with infinite structures formed by assembly of metal or metal-based clusters and molecular ligands. The structures of the coordination polymers are generally determined by analyzing single crystals [1][2][3][4]. With the development of suitable synthetic strategies, various kinds of
PDF
Album
Review
Published 12 Aug 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • , due to the energy and electron transfer from plasmon-resonant metal surfaces to the adjacent semiconductor. Such hybrid materials have been proposed for medical and pharmaceutical applications, catalysis, and electronics [88]. The photoluminescence emission of ZnO nanoparticles has been exploited in
PDF
Album
Review
Published 27 May 2022

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • [5][6][7]. TP complexes, themselves or as hybrid materials with (semi)conducting species, are redox-active and, thus, enable applications in nanoelectronics and catalysis [8][9][10]. Among the suitable transition metal centers, Ru is highly attractive since Ru(TP)2-complexes show intense metal-to
  • possibilities to tune Ru(TP)2–AuNP devices are more versatile. Conclusion Overall, we demonstrated that hybrid materials from Ru(TP)2-complexes and AuNPs integrated in CMOS-compatible devices are useful switching elements that can be addressed by optical means. Furthermore, we could show that the device
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Topographic signatures and manipulations of Fe atoms, CO molecules and NaCl islands on superconducting Pb(111)

  • Carl Drechsel,
  • Philipp D’Astolfo,
  • Jung-Ching Liu,
  • Thilo Glatzel,
  • Rémy Pawlak and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2022, 13, 1–9, doi:10.3762/bjnano.13.1

Graphical Abstract
  • Carl Drechsel Philipp D'Astolfo Jung-Ching Liu Thilo Glatzel Remy Pawlak Ernst Meyer Department of Physics, Universität Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland 10.3762/bjnano.13.1 Abstract Topological superconductivity emerging in one- or two-dimensional hybrid materials is
PDF
Album
Letter
Published 03 Jan 2022

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • nanoparticles (LPHN). Lipid–polymer hybrid nanoparticles have recently emerged as a strategy directed to take advantage of the intrinsic benefits of both liposomes and PNP, as well as to improve drawbacks such as structural disintegration, limited circulation time, and drug leakage. The hybrid materials are
PDF
Album
Review
Published 15 Sep 2021

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

  • Jari Järvi,
  • Patrick Rinke and
  • Milica Todorović

Beilstein J. Nanotechnol. 2020, 11, 1577–1589, doi:10.3762/bjnano.11.140

Graphical Abstract
  • technologies are increasingly based on advanced functional materials, which are often blends of organic and inorganic components. For example, in search for renewable energy solutions, hybrid perovskites are currently the best candidate to replace silicon in our solar cells [1]. In medicine, hybrid materials
  • its reliable identification, we must explore the PES thoroughly. Calculating the full PES for complex hybrid materials requires either (i) fast energy computations, or (ii) an advanced method of constructing the complete PES with a small number of energy points. Classical force-field potentials are
  • fast to compute, but they cannot accurately model hybrid materials, in which atomic interactions often feature a mixture of covalent and dispersive bonding, with charge transfer and polarization effects. Instead, we must employ quantum mechanical methods, such as density-functional theory (DFT) [12][13
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2020

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • platinum loading, degree of oxidation, and the very narrow particle size distribution are precisely adjusted in the Pt/C hybrid material due to the simultaneous deposition of platinum and carbon during the process. The as-synthesized Pt/C hybrid materials are promising electrocatalysts for use in fuel cell
  • for the deposition of Pt/CNW hybrid materials using plasma-enhanced chemical vapor deposition is presented. The wall density and height of the carbon matrix, as well as the platinum loading, degree of oxidation, and particle size distribution, can be precisely controlled by careful adjustment of the
  • the plasma system, synthesis, and characterization methods are given in a recent publication on the growth of Al/CNW hybrid materials from aluminum acetylacetonate [17]. Synthesis The deposition experiments are performed in an inductively coupled plasma-enhanced chemical vapor deposition system
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Plant growth regulation by seed coating with films of alginate and auxin-intercalated layered double hydroxides

  • Vander A. de Castro,
  • Valber G. O. Duarte,
  • Danúbia A. C. Nobre,
  • Geraldo H. Silva,
  • Vera R. L. Constantino,
  • Frederico G. Pinto,
  • Willian R. Macedo and
  • Jairo Tronto

Beilstein J. Nanotechnol. 2020, 11, 1082–1091, doi:10.3762/bjnano.11.93

Graphical Abstract
  • showed to be a suitable boron source for the growth of plants, especially in sandy soils. The abovementioned works show that organic–inorganic hybrid materials provide a physical and chemical protection for the intercalated molecules. When these materials are applied, they can offer modified release of
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • ; organic–inorganic hybrid materials; particle synthesis; semiconductors; transport across interfaces; Introduction Recently the class of hybrid perovskites attracted great attention in materials chemistry and physics [1][2][3]. In addition to an outstanding performance in photovoltaics, a peculiar feature
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • example of a hybrid material in which an indigo derivative is stabilized into magnesium aluminum phyllosilicate. This material, palygorskite, was used to produce beautiful mural paintings that are still shining centuries later [1][2][3]. Since these origins, the field of hybrid materials has developed
  • into a broad scientific and technological subject including important fields such as sol–gel chemistry [4][5], polymer nanocomposites [6][7], and hybrid nanomaterials [8][9]. Nowadays, hybrid materials are almost everywhere and provide a wide range of applications from biology and health, to photonic
  • individual building blocks as well as between different materials. Moreover, the implementation of hybrid systems in devices implies miniaturization. Therefore, nanostructuration or nanoarchitectonics is the core of current research in hybrid materials, and the analysis of advanced hybrid materials needs
PDF
Editorial
Published 20 Dec 2019

Small protein sequences can induce cellular uptake of complex nanohybrids

  • Jan-Philip Merkl,
  • Malak Safi,
  • Christian Schmidtke,
  • Fadi Aldeek,
  • Johannes Ostermann,
  • Tatiana Domitrovic,
  • Sebastian Gärtner,
  • John E. Johnson,
  • Horst Weller and
  • Hedi Mattoussi

Beilstein J. Nanotechnol. 2019, 10, 2477–2482, doi:10.3762/bjnano.10.238

Graphical Abstract
  • macrophages to these hybrid materials combined with an improvement in their in vivo tumour accumulation [6]. Weil and co-workers described the use of multimodal platforms, made of diamond dots combined with gold nanoparticles, as imaging probes of live cell cultures [7]. We have recently characterized a
PDF
Album
Supp Info
Letter
Published 12 Dec 2019

Multiwalled carbon nanotube based aromatic volatile organic compound sensor: sensitivity enhancement through 1-hexadecanethiol functionalisation

  • Nadra Bohli,
  • Meryem Belkilani,
  • Juan Casanova-Chafer,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2019, 10, 2364–2373, doi:10.3762/bjnano.10.227

Graphical Abstract
  • correlated to the active sensing film/material used. Various nanomaterial-based gas sensors have been investigated to monitor the presence of aromatic VOCs. The ones mainly studied are based on metal oxides, carbon nanotubes, graphene and hybrid materials [5][6]. Carbon nanotube based gas sensors (e.g
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2019

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

  • Manuel Souto,
  • Joaquín Calbo,
  • Samuel Mañas-Valero,
  • Aron Walsh and
  • Guillermo Mínguez Espallargas

Beilstein J. Nanotechnol. 2019, 10, 1883–1893, doi:10.3762/bjnano.10.183

Graphical Abstract
  • constructed from metallic nodes and organic linkers, have been a major breakthrough in chemistry in the last decades [1][2]. Because of their immense structural and functional possibilities, this class of hybrid materials finds several applications in, for example, gas storage and separation, sensing or
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides

  • Ediana Paula Rebitski,
  • Margarita Darder and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

Graphical Abstract
  • nanofiller in Nafion membranes for fuel-cell applications [35]. With these premises, the current aim is to ascertain if it is possible to develop organic–inorganic hybrid materials using LDH-sepiolite nanoarchitectonic materials, as the presence of an organic counterpart could be of interest for introducing
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2019

Magnetic segregation effect in liquid crystals doped with carbon nanotubes

  • Danil A. Petrov,
  • Pavel K. Skokov,
  • Alexander N. Zakhlevnykh and
  • Dmitriy V. Makarov

Beilstein J. Nanotechnol. 2019, 10, 1464–1474, doi:10.3762/bjnano.10.145

Graphical Abstract
  • modifies many properties of liquid crystals and leads to the possibility of obtaining new hybrid materials with unique electro- and magneto-optical properties, which opens prospects for new practical applications in optoelectronics, photonics, and display technology [11]. From a physical perspective, these
PDF
Album
Full Research Paper
Published 22 Jul 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • stability of these multicomponent hybrid materials in water showing a mass loss of only 3.2 wt % over the course of two months. This excellent stability, together with the good electrical and mechanical properties, suggest that the prepared multicomponent bionanocomposite can be suitable as electrode
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Tailoring the magnetic properties of cobalt ferrite nanoparticles using the polyol process

  • Malek Bibani,
  • Romain Breitwieser,
  • Alex Aubert,
  • Vincent Loyau,
  • Silvana Mercone,
  • Souad Ammar and
  • Fayna Mammeri

Beilstein J. Nanotechnol. 2019, 10, 1166–1176, doi:10.3762/bjnano.10.116

Graphical Abstract
  • be significantly smaller. This discrepancy is mainly due to the difficulties in producing hybrid materials with large and perfect interfaces [5]. The use of nanomaterials exhibiting large surface-to-volume ratios instead of bulk materials can help to overcome this limitation. To the best of our
  • -stoichiometric, appropriate for the use as ferromagnetic building blocks in nanostructured magnetoelectric materials, particularly polymer-based hybrid materials. We hope this work is providing some insight into the ability to design efficient magnetic and magnetostrictive particles that can be further
PDF
Album
Full Research Paper
Published 04 Jun 2019
Other Beilstein-Institut Open Science Activities